
9

Searching

Organizing and retrieving information is at the heart of most computer applica-
tions, and searching is surely the most frequently performed of all computing tasks.
Search can be viewed abstractly as a process to determine if an element with a par-
ticular value is a member of a particular set. The more common view of searching
is an attempt to find the record within a collection of records that has a particular
key value, or those records in a collection whose key values meet some criterion
such as falling within a range of values.

We can define searching formally as follows. Suppose that we have a collection
L of n records of the form

(k1, I1), (k2, I2), ..., (kn, In)

where Ij is information associated with key kj from record j for 1 ≤ j ≤ n. Given
a particular key value K, the search problem is to locate a record (kj , Ij) in L
such that kj = K (if one exists). Searching is a systematic method for locating the
record (or records) with key value kj = K.

A successful search is one in which a record with key kj = K is found. An
unsuccessful search is one in which no record with kj = K is found (and no such
record exists).

An exact-match query is a search for the record whose key value matches a
specified key value. A range query is a search for all records whose key value falls
within a specified range of key values.

We can categorize search algorithms into three general approaches:

1. Sequential and list methods.
2. Direct access by key value (hashing).
3. Tree indexing methods.

This and the following chapter treat these three approaches in turn. Any of
these approaches are potentially suitable for implementing the Dictionary ADT

301

302 Chap. 9 Searching

introduced in Section 4.4. However, each has different performance characteristics
that make it the method of choice in particular circumstances.

The current chapter considers methods for searching data stored in lists. List in
this context means any list implementation including a linked list or an array. Most
of these methods are appropriate for sequences (i.e., duplicate key values are al-
lowed), although special techniques applicable to sets are discussed in Section 9.3.
The techniques from the first three sections of this chapter are most appropriate for
searching a collection of records stored in RAM. Section 9.4 discusses hashing,
a technique for organizing data in an array such that the location of each record
within the array is a function of its key value. Hashing is appropriate when records
are stored either in RAM or on disk.

Chapter 10 discusses tree-based methods for organizing information on disk,
including a commonly used file structure called the B-tree. Nearly all programs that
must organize large collections of records stored on disk use some variant of either
hashing or the B-tree. Hashing is practical for only certain access functions (exact-
match queries) and is generally appropriate only when duplicate key values are
not allowed. B-trees are the method of choice for dynamic disk-based applications
anytime hashing is not appropriate.

9.1 Searching Unsorted and Sorted Arrays

The simplest form of search has already been presented in Example 3.1: the se-
quential search algorithm. Sequential search on an unsorted list requires Θ(n) time
in the worst case.

How many comparisons does linear search do on average? A major consid-
eration is whether K is in list L at all. We can simplify our analysis by ignoring
everything about the input except the position of K if it is found in L. Thus, we have
n + 1 distinct possible events: That K is in one of positions 0 to n − 1 in L (each
position having its own probability), or that it is not in L at all. We can express the
probability that K is not in L as

P(K /∈ L) = 1−
n∑
i=1

P(K = L[i])

where P(x) is the probability of event x.
Let pi be the probability that K is in position i of L (indexed from 0 to n − 1.

For any position i in the list, we must look at i + 1 records to reach it. So we say
that the cost when K is in position i is i+ 1. When K is not in L, sequential search
will require n comparisons. Let pn be the probability that K is not in L. Then the
average cost T(n) will be

Sec. 9.1 Searching Unsorted and Sorted Arrays 303

T(n) = npn +

n−1∑
i=0

(i+ 1)pi.

What happens to the equation if we assume all the pi’s are equal (except p0)?

T(n) = pnn+

n−1∑
i=0

(i+ 1)p

= pnn+ p
n∑
i=1

i

= pnn+ p
n(n+ 1)

2

= pnn+
1− pn
n

n(n+ 1)

2

=
n+ 1 + pn(n− 1)

2

Depending on the value of pn, n+1
2 ≤ T(n) ≤ n.

For large collections of records that are searched repeatedly, sequential search
is unacceptably slow. One way to reduce search time is to preprocess the records
by sorting them. Given a sorted array, an obvious improvement over simple linear
search is to test if the current element in L is greater than K. If it is, then we know
that K cannot appear later in the array, and we can quit the search early. But this
still does not improve the worst-case cost of the algorithm.

We can also observe that if we look first at position 1 in sorted array L and find
that K is bigger, then we rule out position 0 as well as position 1. Because more
is often better, what if we look at position 2 in L and find that K is bigger yet?
This rules out positions 0, 1, and 2 with one comparison. What if we carry this to
the extreme and look first at the last position in L and find that K is bigger? Then
we know in one comparison that K is not in L. This is very useful to know, but
what is wrong with the conclusion that we should always start by looking at the last
position? The problem is that, while we learn a lot sometimes (in one comparison
we might learn that K is not in the list), usually we learn only a little bit (that the
last element is not K).

The question then becomes: What is the right amount to jump? This leads us
to an algorithm known as Jump Search. For some value j, we check every j’th
element in L, that is, we check elements L[j], L[2j], and so on. So long as K is
greater than the values we are checking, we continue on. But when we reach a

304 Chap. 9 Searching

value in L greater than K, we do a linear search on the piece of length j − 1 that
we know brackets K if it is in the list.

If we define m such that mj ≤ n < (m + 1)j, then the total cost of this
algorithm is at most m + j − 1 3-way comparisons. (They are 3-way because at
each comparison of K with some L[i] we need to know if K is less than, equal to,
or greater than L[i].) Therefore, the cost to run the algorithm on n items with a
jump of size j is

T(n, j) = m+ j − 1 =

⌊
n

j

⌋
+ j − 1.

What is the best value that we can pick for j? We want to minimize the cost:

min
1≤j≤n

{⌊
n

j

⌋
+ j − 1

}
Take the derivative and solve for f ′(j) = 0 to find the minimum, which is

j =
√
n. In this case, the worst case cost will be roughly 2

√
n.

This example invokes a basic principle of algorithm design. We want to bal-
ance the work done while selecting a sublist with the work done while searching a
sublist. In general, it is a good strategy to make subproblems of equal effort. This
is an example of a divide and conquer algorithm.

What if we extend this idea to three levels? We would first make jumps of
some size j to find a sublist of size j − 1 whose end values bracket value K. We
would then work through this sublist by making jumps of some smaller size, say
j1. Finally, once we find a bracketed sublist of size j1 − 1, we would do sequential
search to complete the process.

This probably sounds convoluted to do two levels of jumping to be followed by
a sequential search. While it might make sense to do a two-level algorithm (that is,
jump search jumps to find a sublist and then does sequential search on the sublist),
it almost never seems to make sense to do a three-level algorithm. Instead, when
we go beyond two levels, we nearly always generalize by using recursion. This
leads us to the most commonly used search algorithm for sorted arrays, the binary
search described in Section 3.5.

If we know nothing about the distribution of key values, then binary search
is the best algorithm available for searching a sorted array (see Exercise 9.22).
However, sometimes we do know something about the expected key distribution.
Consider the typical behavior of a person looking up a word in a large dictionary.
Most people certainly do not use sequential search! Typically, people use a mod-
ified form of binary search, at least until they get close to the word that they are
looking for. The search generally does not start at the middle of the dictionary. A
person looking for a word starting with ‘S’ generally assumes that entries beginning
with ‘S’ start about three quarters of the way through the dictionary. Thus, he or

Sec. 9.1 Searching Unsorted and Sorted Arrays 305

she will first open the dictionary about three quarters of the way through and then
make a decision based on what is found as to where to look next. In other words,
people typically use some knowledge about the expected distribution of key values
to “compute” where to look next. This form of “computed” binary search is called
a dictionary search or interpolation search. In a dictionary search, we search L
at a position p that is appropriate to the value of K as follows.

p =
K− L[1]

L[n]− L[1]

This equation is computing the position of K as a fraction of the distance be-
tween the smallest and largest key values. This will next be translated into that
position which is the same fraction of the way through the array, and this position
is checked first. As with binary search, the value of the key found eliminates all
records either above or below that position. The actual value of the key found can
then be used to compute a new position within the remaining range of the array.
The next check is made based on the new computation. This proceeds until either
the desired record is found, or the array is narrowed until no records are left.

A variation on dictionary search is known as Quadratic Binary Search (QBS),
and we will analyze this in detail because its analysis is easier than that of the
general dictionary search. QBS will first compute p and then examine L[dpne]. If
K < L[dpne] then QBS will sequentially probe to the left by steps of size

√
n, that

is, we step through
L[dpn− i

√
ne], i = 1, 2, 3, ...

until we reach a value less than or equal to K. Similarly for K > L[dpne] we will
step to the right by

√
n until we reach a value in L that is greater than K. We are

now within
√
n positions of K. Assume (for now) that it takes a constant number of

comparisons to bracket K within a sublist of size
√
n. We then take this sublist and

repeat the process recursively. That is, at the next level we compute an interpolation
to start somewhere in the subarray. We then step to the left or right (as appropriate)
by steps of size

√√
n.

What is the cost for QBS? Note that
√
cn = cn/2, and we will be repeatedly

taking square roots of the current sublist size until we find the item that we are
looking for. Because n = 2logn and we can cut log n in half only log log n times,
the cost is Θ(log log n) if the number of probes on jump search is constant.

Say that the number of comparisons needed is i, in which case the cost is i
(since we have to do i comparisons). If Pi is the probability of needing exactly i
probes, then √

n∑
i=1

iP(need exactly i probes)

= 1P1 + 2P2 + 3P3 + · · ·+
√
nP√n

306 Chap. 9 Searching

We now show that this is the same as
√
n∑

i=1

P(need at least i probes)

= 1 + (1−P1) + (1−P1 −P2) + · · ·+ P√n

= (P1 + ...+ P√n) + (P2 + ...+ P√n) +

(P3 + ...+ P√n) + · · ·

= 1P1 + 2P2 + 3P3 + · · ·+
√
nP√n

We require at least two probes to set the bounds, so the cost is

2 +

√
n∑

i=3

P(need at least i probes).

We now make take advantage of a useful fact known as Čebyšev’s Inequality.
Čebyšev’s inequality states that P(need exactly i probes), or Pi, is

Pi ≤
p(1− p)n
(i− 2)2n

≤ 1

4(i− 2)2

because p(1− p) ≤ 1/4 for any probability p. This assumes uniformly distributed
data. Thus, the expected number of probes is

2 +

√
n∑

i=3

1

4(i− 2)2
< 2 +

1

4

∞∑
i=1

1

i2
= 2 +

1

4

π

6
≈ 2.4112

Is QBS better than binary search? Theoretically yes, because O(log log n)
grows slower than O(log n). However, we have a situation here which illustrates
the limits to the model of asymptotic complexity in some practical situations. Yes,
c1 log n does grow faster than c2 log log n. In fact, it is exponentially faster! But
even so, for practical input sizes, the absolute cost difference is fairly small. Thus,
the constant factors might play a role. First we compare lg lgn to lg n.

Factor
n lg n lg lg n Difference
16 4 2 2
256 8 3 2.7
216 16 4 4
232 32 5 6.4

Sec. 9.2 Self-Organizing Lists 307

It is not always practical to reduce an algorithm’s growth rate. There is a “prac-
ticality window” for every problem, in that we have a practical limit to how big an
input we wish to solve for. If our problem size never grows too big, it might not
matter if we can reduce the cost by an extra log factor, because the constant factors
in the two algorithms might differ by more than the log of the log of the input size.

For our two algorithms, let us look further and check the actual number of
comparisons used. For binary search, we need about log n − 1 total comparisons.
Quadratic binary search requires about 2.4 lg lg n comparisons. If we incorporate
this observation into our table, we get a different picture about the relative differ-
ences.

Factor
n lg n− 1 2.4 lg lg n Difference
16 3 4.8 worse
256 7 7.2 ≈ same
64K 15 9.6 1.6
232 31 12 2.6

But we still are not done. This is only a count of raw comparisons. Bi-
nary search is inherently much simpler than QBS, because binary search only
needs to calculate the midpoint position of the array before each comparison, while
quadratic binary search must calculate an interpolation point which is more expen-
sive. So the constant factors for QBS are even higher.

Not only are the constant factors worse on average, but QBS is far more depen-
dent than binary search on good data distribution to perform well. For example,
imagine that you are searching a telephone directory for the name “Young.” Nor-
mally you would look near the back of the book. If you found a name beginning
with ‘Z,’ you might look just a little ways toward the front. If the next name you
find also begins with ’Z,‘ you would look a little further toward the front. If this
particular telephone directory were unusual in that half of the entries begin with ‘Z,’
then you would need to move toward the front many times, each time eliminating
relatively few records from the search. In the extreme, the performance of interpo-
lation search might not be much better than sequential search if the distribution of
key values is badly calculated.

While it turns out that QBS is not a practical algorithm, this is not a typical
situation. Fortunately, algorithm growth rates are usually well behaved, so that as-
ymptotic algorithm analysis nearly always gives us a practical indication for which
of two algorithms is better.

9.2 Self-Organizing Lists

While ordering of lists is most commonly done by key value, this is not the only
viable option. Another approach to organizing lists to speed search is to order the

308 Chap. 9 Searching

records by expected frequency of access. While the benefits might not be as great
as when organized by key value, the cost to organize (at least approximately) by
frequency of access can be much cheaper, and thus can speed up sequential search
in some situations.

Assume that we know, for each key ki, the probability pi that the record with
key ki will be requested. Assume also that the list is ordered so that the most
frequently requested record is first, then the next most frequently requested record,
and so on. Search in the list will be done sequentially, beginning with the first
position. Over the course of many searches, the expected number of comparisons
required for one search is

Cn = 1p0 + 2p1 + ...+ npn−1.

In other words, the cost to access the record in L[0] is 1 (because one key value is
looked at), and the probability of this occurring is p0. The cost to access the record
in L[1] is 2 (because we must look at the first and the second records’ key values),
with probability p1, and so on. For n records, assuming that all searches are for
records that actually exist, the probabilities p0 through pn−1 must sum to one.

Certain probability distributions give easily computed results.

Example 9.1 Calculate the expected cost to search a list when each record
has equal chance of being accessed (the classic sequential search through
an unsorted list). Setting pi = 1/n yields

Cn =
n∑
i=1

i/n = (n+ 1)/2.

This result matches our expectation that half the records will be accessed on
average by normal sequential search. If the records truly have equal access
probabilities, then ordering records by frequency yields no benefit. We saw
in Section 9.1 the more general case where we must consider the probability
(labeled pn) that the search key does not match that for any record in the
array. In that case, in accordance with our general formula, we get

(1−pn)
n+ 1

2
+pnn =

n+ 1− npnn− pn + 2pn
2

=
n+ 1 + p0(n− 1)

2
.

Thus, n+1
2 ≤ Cn ≤ n, depending on the value of p0.

A geometric probability distribution can yield quite different results.

Sec. 9.2 Self-Organizing Lists 309

Example 9.2 Calculate the expected cost for searching a list ordered by
frequency when the probabilities are defined as

pi =

{
1/2i if 0 ≤ i ≤ n− 2
1/2n if i = n− 1.

Then,

Cn ≈
n−1∑
i=0

(i+ 1)/2i+1 =
n∑
i=1

(i/2i) ≈ 2.

For this example, the expected number of accesses is a constant. This is
because the probability for accessing the first record is high (one half), the
second is much lower (one quarter) but still much higher than for the third
record, and so on. This shows that for some probability distributions, or-
dering the list by frequency can yield an efficient search technique.

In many search applications, real access patterns follow a rule of thumb called
the 80/20 rule. The 80/20 rule says that 80% of the record accesses are to 20%
of the records. The values of 80 and 20 are only estimates; every data access pat-
tern has its own values. However, behavior of this nature occurs surprisingly often
in practice (which explains the success of caching techniques widely used by web
browsers for speeding access to web pages, and by disk drive and CPU manufac-
turers for speeding access to data stored in slower memory; see the discussion on
buffer pools in Section 8.3). When the 80/20 rule applies, we can expect consid-
erable improvements to search performance from a list ordered by frequency of
access over standard sequential search in an unordered list.

Example 9.3 The 80/20 rule is an example of a Zipf distribution. Nat-
urally occurring distributions often follow a Zipf distribution. Examples
include the observed frequency for the use of words in a natural language
such as English, and the size of the population for cities (i.e., view the
relative proportions for the populations as equivalent to the “frequency of
use”). Zipf distributions are related to the Harmonic Series defined in Equa-
tion 2.10. Define the Zipf frequency for item i in the distribution for n
records as 1/(iHn) (see Exercise 9.4). The expected cost for the series
whose members follow this Zipf distribution will be

Cn =

n∑
i=1

i/iHn = n/Hn ≈ n/ loge n.

When a frequency distribution follows the 80/20 rule, the average search
looks at about 10-15% of the records in a list ordered by frequency.

310 Chap. 9 Searching

This is potentially a useful observation that typical “real-life” distributions of
record accesses, if the records were ordered by frequency, would require that we
visit on average only 10-15% of the list when doing sequential search. This means
that if we had an application that used sequential search, and we wanted to make it
go a bit faster (by a constant amount), we could do so without a major rewrite to
the system to implement something like a search tree. But that is only true if there
is an easy way to (at least approximately) order the records by frequency.

In most applications, we have no means of knowing in advance the frequencies
of access for the data records. To complicate matters further, certain records might
be accessed frequently for a brief period of time, and then rarely thereafter. Thus,
the probability of access for records might change over time (in most database
systems, this is to be expected). Self-organizing lists seek to solve both of these
problems.

Self-organizing lists modify the order of records within the list based on the
actual pattern of record access. Self-organizing lists use a heuristic for deciding
how to to reorder the list. These heuristics are similar to the rules for managing
buffer pools (see Section 8.3). In fact, a buffer pool is a form of self-organizing
list. Ordering the buffer pool by expected frequency of access is a good strategy,
because typically we must search the contents of the buffers to determine if the
desired information is already in main memory. When ordered by frequency of
access, the buffer at the end of the list will be the one most appropriate for reuse
when a new page of information must be read. Below are three traditional heuristics
for managing self-organizing lists:

1. The most obvious way to keep a list ordered by frequency would be to store
a count of accesses to each record and always maintain records in this or-
der. This method will be referred to as count. Count is similar to the least
frequently used buffer replacement strategy. Whenever a record is accessed,
it might move toward the front of the list if its number of accesses becomes
greater than a record preceding it. Thus, count will store the records in the
order of frequency that has actually occurred so far. Besides requiring space
for the access counts, count does not react well to changing frequency of
access over time. Once a record has been accessed a large number of times
under the frequency count system, it will remain near the front of the list
regardless of further access history.

2. Bring a record to the front of the list when it is found, pushing all the other
records back one position. This is analogous to the least recently used buffer
replacement strategy and is called move-to-front. This heuristic is easy to
implement if the records are stored using a linked list. When records are
stored in an array, bringing a record forward from near the end of the array
will result in a large number of records (slightly) changing position. Move-
to-front’s cost is bounded in the sense that it requires at most twice the num-

Sec. 9.2 Self-Organizing Lists 311

ber of accesses required by the optimal static ordering for n records when
at least n searches are performed. In other words, if we had known the se-
ries of (at least n) searches in advance and had stored the records in order of
frequency so as to minimize the total cost for these accesses, this cost would
be at least half the cost required by the move-to-front heuristic. (This will
be proved using amortized analysis in Section 14.3.) Finally, move-to-front
responds well to local changes in frequency of access, in that if a record is
frequently accessed for a brief period of time it will be near the front of the
list during that period of access. Move-to-front does poorly when the records
are processed in sequential order, especially if that sequential order is then
repeated multiple times.

3. Swap any record found with the record immediately preceding it in the list.
This heuristic is called transpose. Transpose is good for list implementations
based on either linked lists or arrays. Frequently used records will, over time,
move to the front of the list. Records that were once frequently accessed but
are no longer used will slowly drift toward the back. Thus, it appears to have
good properties with respect to changing frequency of access. Unfortunately,
there are some pathological sequences of access that can make transpose
perform poorly. Consider the case where the last record of the list (call it X) is
accessed. This record is then swapped with the next-to-last record (call it Y),
making Y the last record. If Y is now accessed, it swaps with X. A repeated
series of accesses alternating between X and Y will continually search to the
end of the list, because neither record will ever make progress toward the
front. However, such pathological cases are unusual in practice. A variation
on transpose would be to move the accessed record forward in the list by
some fixed number of steps.

Example 9.4 Assume that we have eight records, with key valuesA toH ,
and that they are initially placed in alphabetical order. Now, consider the
result of applying the following access pattern:

F D F G E G F A D F G E.

Assume that when a record’s frequency count goes up, it moves forward in
the list to become the last record with that value for its frequency count.
After the first two accesses, F will be the first record and D will be the
second. The final list resulting from these accesses will be

F G D E A B C H,

and the total cost for the twelve accesses will be 45 comparisons.
If the list is organized by the move-to-front heuristic, then the final list

will be

E G F D A B C H,

312 Chap. 9 Searching

and the total number of comparisons required is 54.
Finally, if the list is organized by the transpose heuristic, then the final

list will be

A B F D G E C H,

and the total number of comparisons required is 62.

While self-organizing lists do not generally perform as well as search trees or a
sorted list, both of which require O(log n) search time, there are many situations in
which self-organizing lists prove a valuable tool. Obviously they have an advantage
over sorted lists in that they need not be sorted. This means that the cost to insert
a new record is low, which could more than make up for the higher search cost
when insertions are frequent. Self-organizing lists are simpler to implement than
search trees and are likely to be more efficient for small lists. Nor do they require
additional space. Finally, in the case of an application where sequential search is
“almost” fast enough, changing an unsorted list to a self-organizing list might speed
the application enough at a minor cost in additional code.

As an example of applying self-organizing lists, consider an algorithm for com-
pressing and transmitting messages. The list is self-organized by the move-to-front
rule. Transmission is in the form of words and numbers, by the following rules:

1. If the word has been seen before, transmit the current position of the word in
the list. Move the word to the front of the list.

2. If the word is seen for the first time, transmit the word. Place the word at the
front of the list.

Both the sender and the receiver keep track of the position of words in the list
in the same way (using the move-to-front rule), so they agree on the meaning of
the numbers that encode repeated occurrences of words. Consider the following
example message to be transmitted (for simplicity, ignore case in letters).

The car on the left hit the car I left.

The first three words have not been seen before, so they must be sent as full
words. The fourth word is the second appearance of “the,” which at this point is
the third word in the list. Thus, we only need to transmit the position value “3.”
The next two words have not yet been seen, so must be sent as full words. The
seventh word is the third appearance of “the,” which coincidentally is again in the
third position. The eighth word is the second appearance of “car,” which is now in
the fifth position of the list. “I” is a new word, and the last word “left” is now in
the fifth position. Thus the entire transmission would be

The car on 3 left hit 3 5 I 5.

Sec. 9.3 Bit Vectors for Representing Sets 313

0 1 2 3 4 5 6 7 8 9 10 11 12 15

000001010 0 11 101

13 14

0

Figure 9.1 The bit array for the set of primes in the range 0 to 15. The bit at
position i is set to 1 if and only if i is prime.

This approach to compression is similar in spirit to Ziv-Lempel coding, which
is a class of coding algorithms commonly used in file compression utilities. Ziv-
Lempel coding replaces repeated occurrences of strings with a pointer to the lo-
cation in the file of the first occurrence of the string. The codes are stored in a
self-organizing list in order to speed up the time required to search for a string that
has previously been seen.

9.3 Bit Vectors for Representing Sets

Determining whether a value is a member of a particular set is a special case of
searching for keys in a sequence of records. Thus, any of the search methods
discussed in this book can be used to check for set membership. However, we
can also take advantage of the restricted circumstances imposed by this problem to
develop another representation.

In the case where the set values fall within a limited range, we can represent the
set using a bit array with a bit position allocated for each potential member. Those
members actually in the set store a value of 1 in their corresponding bit; those
members not in the set store a value of 0 in their corresponding bit. For example,
consider the set of primes between 0 and 15. Figure 9.1 shows the corresponding
bit array. To determine if a particular value is prime, we simply check the corre-
sponding bit. This representation scheme is called a bit vector or a bitmap. The
mark array used in several of the graph algorithms of Chapter 11 is an example of
such a set representation.

If the set fits within a single computer word, then set union, intersection, and
difference can be performed by logical bit-wise operations. The union of sets A
and B is the bit-wise OR function (whose symbol is | in Java). The intersection
of sets A and B is the bit-wise AND function (whose symbol is & in Java). For
example, if we would like to compute the set of numbers between 0 and 15 that are
both prime and odd numbers, we need only compute the expression

0011010100010100 & 0101010101010101.

The set difference A − B can be implemented in Java using the expression A&˜B
(˜ is the symbol for bit-wise negation). For larger sets that do not fit into a single
computer word, the equivalent operations can be performed in turn on the series of
words making up the entire bit vector.

314 Chap. 9 Searching

This method of computing sets from bit vectors is sometimes applied to doc-
ument retrieval. Consider the problem of picking from a collection of documents
those few which contain selected keywords. For each keyword, the document re-
trieval system stores a bit vector with one bit for each document. If the user wants to
know which documents contain a certain three keywords, the corresponding three
bit vectors are AND’ed together. Those bit positions resulting in a value of 1 cor-
respond to the desired documents. Alternatively, a bit vector can be stored for each
document to indicate those keywords appearing in the document. Such an organiza-
tion is called a signature file. The signatures can be manipulated to find documents
with desired combinations of keywords.

9.4 Hashing

This section presents a completely different approach to searching arrays: by direct
access based on key value. The process of finding a record using some computa-
tion to map its key value to a position in the array is called hashing. Most hash-
ing schemes place records in the array in whatever order satisfies the needs of the
address calculation, thus the records are not ordered by value or frequency. The
function that maps key values to positions is called a hash function and will be
denoted by h. The array that holds the records is called the hash table and will be
denoted by HT. A position in the hash table is also known as a slot. The number
of slots in hash table HT will be denoted by the variable M , with slots numbered
from 0 to M − 1. The goal for a hashing system is to arrange things such that, for
any key value K and some hash function h, i = h(K) is a slot in the table such
that 0 ≤ h(K) < M , and we have the key of the record stored at HT[i] equal to
K.

Hashing is not good for applications where multiple records with the same key
value are permitted. Hashing is not a good method for answering range searches. In
other words, we cannot easily find all records (if any) whose key values fall within
a certain range. Nor can we easily find the record with the minimum or maximum
key value, or visit the records in key order. Hashing is most appropriate for answer-
ing the question, “What record, if any, has key value K?” For applications where
access involves only exact-match queries, hashing is usually the search method of
choice because it is extremely efficient when implemented correctly. As you will
see in this section, however, there are many approaches to hashing and it is easy
to devise an inefficient implementation. Hashing is suitable for both in-memory
and disk-based searching and is one of the two most widely used methods for or-
ganizing large databases stored on disk (the other is the B-tree, which is covered in
Chapter 10).

As a simple (though unrealistic) example of hashing, consider storing n records
each with a unique key value in the range 0 to n − 1. In this simple case, a record

Sec. 9.4 Hashing 315

with key k can be stored in HT[k], and the hash function is simply h(k) = k. To
find the record with key value k, simply look in HT[k].

Typically, there are many more values in the key range than there are slots in
the hash table. For a more realistic example, suppose that the key can take any
value in the range 0 to 65,535 (i.e., the key is a two-byte unsigned integer), and that
we expect to store approximately 1000 records at any given time. It is impractical
in this situation to use a hash table with 65,536 slots, because most of the slots will
be left empty. Instead, we must devise a hash function that allows us to store the
records in a much smaller table. Because the possible key range is larger than the
size of the table, at least some of the slots must be mapped to from multiple key
values. Given a hash function h and two keys k1 and k2, if h(k1) = β = h(k2)
where β is a slot in the table, then we say that k1 and k2 have a collision at slot β
under hash function h.

Finding a record with key value K in a database organized by hashing follows
a two-step procedure:

1. Compute the table location h(K).
2. Starting with slot h(K), locate the record containing key K using (if neces-

sary) a collision resolution policy.

9.4.1 Hash Functions

Hashing generally takes records whose key values come from a large range and
stores those records in a table with a relatively small number of slots. Collisions
occur when two records hash to the same slot in the table. If we are careful—or
lucky—when selecting a hash function, then the actual number of collisions will
be few. Unfortunately, even under the best of circumstances, collisions are nearly
unavoidable.1 For example, consider a classroom full of students. What is the
probability that some pair of students shares the same birthday (i.e., the same day
of the year, not necessarily the same year)? If there are 23 students, then the odds
are about even that two will share a birthday. This is despite the fact that there are
365 days in which students can have birthdays (ignoring leap years), on most of
which no student in the class has a birthday. With more students, the probability
of a shared birthday increases. The mapping of students to days based on their

1The exception to this is perfect hashing. Perfect hashing is a system in which records are
hashed such that there are no collisions. A hash function is selected for the specific set of records
being hashed, which requires that the entire collection of records be available before selecting the
hash function. Perfect hashing is efficient because it always finds the record that we are looking
for exactly where the hash function computes it to be, so only one access is required. Selecting a
perfect hash function can be expensive, but might be worthwhile when extremely efficient search
performance is required. An example is searching for data on a read-only CD. Here the database will
never change, the time for each access is expensive, and the database designer can build the hash
table before issuing the CD.

316 Chap. 9 Searching

birthday is similar to assigning records to slots in a table (of size 365) using the
birthday as a hash function. Note that this observation tells us nothing about which
students share a birthday, or on which days of the year shared birthdays fall.

To be practical, a database organized by hashing must store records in a hash
table that is not so large that it wastes space. Typically, this means that the hash
table will be around half full. Because collisions are extremely likely to occur
under these conditions (by chance, any record inserted into a table that is half full
will have a collision half of the time), does this mean that we need not worry about
the ability of a hash function to avoid collisions? Absolutely not. The difference
between a good hash function and a bad hash function makes a big difference in
practice. Technically, any function that maps all possible key values to a slot in
the hash table is a hash function. In the extreme case, even a function that maps
all records to the same slot is a hash function, but it does nothing to help us find
records during a search operation.

We would like to pick a hash function that stores the actual records in the col-
lection such that each slot in the hash table has equal probability of being filled. Un-
fortunately, we normally have no control over the key values of the actual records,
so how well any particular hash function does this depends on the distribution of
the keys within the allowable key range. In some cases, incoming data are well
distributed across their key range. For example, if the input is a set of random
numbers selected uniformly from the key range, any hash function that assigns the
key range so that each slot in the hash table receives an equal share of the range
will likely also distribute the input records uniformly within the table. However,
in many applications the incoming records are highly clustered or otherwise poorly
distributed. When input records are not well distributed throughout the key range
it can be difficult to devise a hash function that does a good job of distributing the
records throughout the table, especially if the input distribution is not known in
advance.

There are many reasons why data values might be poorly distributed.

1. Natural frequency distributions tend to follow a common pattern where a few
of the entities occur frequently while most entities occur relatively rarely.
For example, consider the populations of the 100 largest cities in the United
States. If you plot these populations on a number line, most of them will be
clustered toward the low side, with a few outliers on the high side. This is an
example of a Zipf distribution (see Section 9.2). Viewed the other way, the
home town for a given person is far more likely to be a particular large city
than a particular small town.

2. Collected data are likely to be skewed in some way. Field samples might be
rounded to, say, the nearest 5 (i.e., all numbers end in 5 or 0).

3. If the input is a collection of common English words, the beginning letter
will be poorly distributed.

Sec. 9.4 Hashing 317

Note that in examples 2 and 3, either high- or low-order bits of the key are poorly
distributed.

When designing hash functions, we are generally faced with one of two situa-
tions.

1. We know nothing about the distribution of the incoming keys. In this case,
we wish to select a hash function that evenly distributes the key range across
the hash table, while avoiding obvious opportunities for clustering such as
hash functions that are sensitive to the high- or low-order bits of the key
value.

2. We know something about the distribution of the incoming keys. In this case,
we should use a distribution-dependent hash function that avoids assigning
clusters of related key values to the same hash table slot. For example, if
hashing English words, we should not hash on the value of the first character
because this is likely to be unevenly distributed.

Below are several examples of hash functions that illustrate these points.

Example 9.5 Consider the following hash function used to hash integers
to a table of sixteen slots:

int h(int x) {
return(x % 16);

}

The value returned by this hash function depends solely on the least
significant four bits of the key. Because these bits are likely to be poorly
distributed (as an example, a high percentage of the keys might be even
numbers, which means that the low order bit is zero), the result will also
be poorly distributed. This example shows that the size of the table M can
have a big effect on the performance of a hash system because this value is
typically used as the modulus to ensure that the hash function produces a
number in the range 0 to M − 1.

Example 9.6 A good hash function for numerical values comes from the
mid-square method. The mid-square method squares the key value, and
then takes the middle r bits of the result, giving a value in the range 0 to
2r − 1. This works well because most or all bits of the key value contribute
to the result. For example, consider records whose keys are 4-digit numbers
in base 10. The goal is to hash these key values to a table of size 100
(i.e., a range of 0 to 99). This range is equivalent to two digits in base 10.
That is, r = 2. If the input is the number 4567, squaring yields an 8-digit
number, 20857489. The middle two digits of this result are 57. All digits

318 Chap. 9 Searching

4567
4567

31969
27402

22835
18268
20857489

4567
Figure 9.2 An illustration of the mid-square method, showing the details of
long multiplication in the process of squaring the value 4567. The bottom of the
figure indicates which digits of the answer are most influenced by each digit of
the operands.

(equivalently, all bits when the number is viewed in binary) contribute to the
middle two digits of the squared value. Figure 9.2 illustrates the concept.
Thus, the result is not dominated by the distribution of the bottom digit or
the top digit of the original key value.

Example 9.7 Here is a hash function for strings of characters:

int h(String x, int M) {
char ch[];
ch = x.toCharArray();
int xlength = x.length();

int i, sum;
for (sum=0, i=0; i<x.length(); i++)

sum += ch[i];
return sum % M;

}

This function sums the ASCII values of the letters in a string. If the hash
table sizeM is small, this hash function should do a good job of distributing
strings evenly among the hash table slots, because it gives equal weight to
all characters. This is an example of the folding approach to designing a
hash function. Note that the order of the characters in the string has no
effect on the result. A similar method for integers would add the digits of
the key value, assuming that there are enough digits to (1) keep any one
or two digits with bad distribution from skewing the results of the process
and (2) generate a sum much larger than M . As with many other hash
functions, the final step is to apply the modulus operator to the result, using
table size M to generate a value within the table range. If the sum is not
sufficiently large, then the modulus operator will yield a poor distribution.
For example, because the ASCII value for “A” is 65 and “Z” is 90, sum will
always be in the range 650 to 900 for a string of ten upper case letters. For

Sec. 9.4 Hashing 319

a hash table of size 100 or less, a reasonable distribution results. For a hash
table of size 1000, the distribution is terrible because only slots 650 to 900
can possibly be the home slot for some key value, and the values are not
evenly distributed even within those slots.

Example 9.8 Here is a much better hash function for strings.

long sfold(String s, int M) {

int intLength = s.length() / 4;
long sum = 0;
for (int j = 0; j < intLength; j++) {

char c[] = s.substring(j*4,(j*4)+4).toCharArray();
long mult = 1;
for (int k = 0; k < c.length; k++) {

sum += c[k] * mult;
mult *= 256;

}
}

char c[] = s.substring(intLength * 4).toCharArray();
long mult = 1;
for (int k = 0; k < c.length; k++) {

sum += c[k] * mult;
mult *= 256;

}

return(Math.abs(sum) % M);
}

This function takes a string as input. It processes the string four bytes at
a time, and interprets each of the four-byte chunks as a single long integer
value. The integer values for the four-byte chunks are added together. In
the end, the resulting sum is converted to the range 0 to M − 1 using the
modulus operator.2

For example, if the string “aaaabbbb” is passed to sfold, then the first
four bytes (“aaaa”) will be interpreted as the integer value 1,633,771,873
and the next four bytes (“bbbb”) will be interpreted as the integer value
1,650,614,882. Their sum is 3,284,386,755 (when viewed as an unsigned
integer). If the table size is 101 then the modulus function will cause this
key to hash to slot 75 in the table. Note that for any sufficiently long string,

2Recall from Section 2.2 that the implementation for n mod m on many C++ and Java compilers
will yield a negative number if n is negative. Implementors for hash functions need to be careful that
their hash function does not generate a negative number. This can be avoided either by insuring that
n is positive when computing n mod m, or adding m to the result if n mod m is negative. Here,
sfold takes the absolute value of sum before applying the modulus operator.

320 Chap. 9 Searching

0

1

2

3

4

5

6

7

8

9

9530

10572007

1000

3013

9879

9877

Figure 9.3 An illustration of open hashing for seven numbers stored in a ten-slot
hash table using the hash function h(K) = K mod 10. The numbers are inserted
in the order 9877, 2007, 1000, 9530, 3013, 9879, and 1057. Two of the values
hash to slot 0, one value hashes to slot 2, three of the values hash to slot 7, and
one value hashes to slot 9.

the sum for the integer quantities will typically cause a 32-bit integer to
overflow (thus losing some of the high-order bits) because the resulting
values are so large. But this causes no problems when the goal is to compute
a hash function.

9.4.2 Open Hashing

While the goal of a hash function is to minimize collisions, some collisions are
unavoidable in practice. Thus, hashing implementations must include some form of
collision resolution policy. Collision resolution techniques can be broken into two
classes: open hashing (also called separate chaining) and closed hashing (also
called open addressing).3 The difference between the two has to do with whether
collisions are stored outside the table (open hashing), or whether collisions result
in storing one of the records at another slot in the table (closed hashing). Open
hashing is treated in this section, and closed hashing in Section 9.4.3.

The simplest form of open hashing defines each slot in the hash table to be
the head of a linked list. All records that hash to a particular slot are placed on
that slot’s linked list. Figure 9.3 illustrates a hash table where each slot stores one
record and a link pointer to the rest of the list.

3Yes, it is confusing when “open hashing” means the opposite of “open addressing,” but unfortu-
nately, that is the way it is.

Sec. 9.4 Hashing 321

Records within a slot’s list can be ordered in several ways: by insertion order,
by key value order, or by frequency-of-access order. Ordering the list by key value
provides an advantage in the case of an unsuccessful search, because we know to
stop searching the list once we encounter a key that is greater than the one being
searched for. If records on the list are unordered or ordered by frequency, then an
unsuccessful search will need to visit every record on the list.

Given a table of size M storing N records, the hash function will (ideally)
spread the records evenly among the M positions in the table, yielding on average
N/M records for each list. Assuming that the table has more slots than there are
records to be stored, we can hope that few slots will contain more than one record.
In the case where a list is empty or has only one record, a search requires only one
access to the list. Thus, the average cost for hashing should be Θ(1). However, if
clustering causes many records to hash to only a few of the slots, then the cost to
access a record will be much higher because many elements on the linked list must
be searched.

Open hashing is most appropriate when the hash table is kept in main memory,
with the lists implemented by a standard in-memory linked list. Storing an open
hash table on disk in an efficient way is difficult, because members of a given
linked list might be stored on different disk blocks. This would result in multiple
disk accesses when searching for a particular key value, which defeats the purpose
of using hashing.

There are similarities between open hashing and Binsort. One way to view
open hashing is that each record is simply placed in a bin. While multiple records
may hash to the same bin, this initial binning should still greatly reduce the number
of records accessed by a search operation. In a similar fashion, a simple Binsort
reduces the number of records in each bin to a small number that can be sorted in
some other way.

9.4.3 Closed Hashing

Closed hashing stores all records directly in the hash table. Each record R with key
value kR has a home position that is h(kR), the slot computed by the hash function.
If R is to be inserted and another record already occupies R’s home position, then
R will be stored at some other slot in the table. It is the business of the collision
resolution policy to determine which slot that will be. Naturally, the same policy
must be followed during search as during insertion, so that any record not found in
its home position can be recovered by repeating the collision resolution process.

Bucket Hashing

One implementation for closed hashing groups hash table slots into buckets. The
M slots of the hash table are divided into B buckets, with each bucket consisting

322 Chap. 9 Searching

0

1

2

3

4

OverflowTable
Hash

9877

2007

3013

9879

1057

9530

1000

Figure 9.4 An illustration of bucket hashing for seven numbers stored in a five-
bucket hash table using the hash function h(K) = K mod 5. Each bucket con-
tains two slots. The numbers are inserted in the order 9877, 2007, 1000, 9530,
3013, 9879, and 1057. Two of the values hash to bucket 0, three values hash to
bucket 2, one value hashes to bucket 3, and one value hashes to bucket 4. Because
bucket 2 cannot hold three values, the third one ends up in the overflow bucket.

of M/B slots. The hash function assigns each record to the first slot within one
of the buckets. If this slot is already occupied, then the bucket slots are searched
sequentially until an open slot is found. If a bucket is entirely full, then the record
is stored in an overflow bucket of infinite capacity at the end of the table. All
buckets share the same overflow bucket. A good implementation will use a hash
function that distributes the records evenly among the buckets so that as few records
as possible go into the overflow bucket. Figure 9.4 illustrates bucket hashing.

When searching for a record, the first step is to hash the key to determine which
bucket should contain the record. The records in this bucket are then searched. If
the desired key value is not found and the bucket still has free slots, then the search
is complete. If the bucket is full, then it is possible that the desired record is stored
in the overflow bucket. In this case, the overflow bucket must be searched until the
record is found or all records in the overflow bucket have been checked. If many
records are in the overflow bucket, this will be an expensive process.

A simple variation on bucket hashing is to hash a key value to some slot in
the hash table as though bucketing were not being used. If the home position is
full, then the collision resolution process is to move down through the table toward
the end of the bucket while searching for a free slot in which to store the record.
If the bottom of the bucket is reached, then the collision resolution routine wraps
around to the top of the bucket to continue the search for an open slot. For example,

Sec. 9.4 Hashing 323

1

3

5

7

9

0

2

4

8

OverflowTable
Hash

1057

9530

1000

6

9879

9877

3013

2007

Figure 9.5 An variant of bucket hashing for seven numbers stored in a 10-slot
hash table using the hash function h(K) = K mod 10. Each bucket contains two
slots. The numbers are inserted in the order 9877, 2007, 1000, 9530, 3013, 9879,
and 1057. Value 9877 first hashes to slot 7, so when value 2007 attempts to do
likewise, it is placed in the other slot associated with that bucket which is slot 6.
When value 1057 is inserted, there is no longer room in the bucket and it is placed
into overflow. The other collision occurs after value 1000 is inserted to slot 0,
causing 9530 to be moved to slot 1.

assume that buckets contain eight records, with the first bucket consisting of slots 0
through 7. If a record is hashed to slot 5, the collision resolution process will
attempt to insert the record into the table in the order 5, 6, 7, 0, 1, 2, 3, and finally 4.
If all slots in this bucket are full, then the record is assigned to the overflow bucket.
The advantage of this approach is that initial collisions are reduced, Because any
slot can be a home position rather than just the first slot in the bucket. Figure 9.5
shows another example for this form of bucket hashing.

Bucket methods are good for implementing hash tables stored on disk, because
the bucket size can be set to the size of a disk block. Whenever search or insertion
occurs, the entire bucket is read into memory. Because the entire bucket is then
in memory, processing an insert or search operation requires only one disk access,
unless the bucket is full. If the bucket is full, then the overflow bucket must be
retrieved from disk as well. Naturally, overflow should be kept small to minimize
unnecessary disk accesses.

324 Chap. 9 Searching

/** Insert record r with key k into HT */
void hashInsert(Key k, E r) {

int home; // Home position for r
int pos = home = h(k); // Initial position
for (int i=1; HT[pos] != null; i++) {

pos = (home + p(k, i)) % M; // Next pobe slot
assert HT[pos].key().compareTo(k) != 0 :

"Duplicates not allowed";
}
HT[pos] = new KVpair<Key,E>(k, r); // Insert R

}

Figure 9.6 Insertion method for a dictionary implemented by a hash table.

Linear Probing

We now turn to the most commonly used form of hashing: closed hashing with no
bucketing, and a collision resolution policy that can potentially use any slot in the
hash table.

During insertion, the goal of collision resolution is to find a free slot in the hash
table when the home position for the record is already occupied. We can view any
collision resolution method as generating a sequence of hash table slots that can
potentially hold the record. The first slot in the sequence will be the home position
for the key. If the home position is occupied, then the collision resolution policy
goes to the next slot in the sequence. If this is occupied as well, then another slot
must be found, and so on. This sequence of slots is known as the probe sequence,
and it is generated by some probe function that we will call p. The insert function
is shown in Figure 9.6.

Method hashInsert first checks to see if the home slot for the key is empty.
If the home slot is occupied, then we use the probe function, p(k, i) to locate a free
slot in the table. Function p has two parameters, the key k and a count i for where
in the probe sequence we wish to be. That is, to get the first position in the probe
sequence after the home slot for key K, we call p(K, 1). For the next slot in the
probe sequence, call p(K, 2). Note that the probe function returns an offset from
the original home position, rather than a slot in the hash table. Thus, the for loop
in hashInsert is computing positions in the table at each iteration by adding
the value returned from the probe function to the home position. The ith call to p
returns the ith offset to be used.

Searching in a hash table follows the same probe sequence that was followed
when inserting records. In this way, a record not in its home position can be recov-
ered. A Java implementation for the search procedure is shown in Figure 9.7.

The insert and search routines assume that at least one slot on the probe se-
quence of every key will be empty. Otherwise, they will continue in an infinite
loop on unsuccessful searches. Thus, the dictionary should keep a count of the

Sec. 9.4 Hashing 325

/** Search in hash table HT for the record with key k */
E hashSearch(Key k) {

int home; // Home position for k
int pos = home = h(k); // Initial position
for (int i = 1; (HT[pos] != null) &&

(HT[pos].key().compareTo(k) != 0); i++)
pos = (home + p(k, i)) % M; // Next probe position

if (HT[pos] == null) return null; // Key not in hash table
else return HT[pos].value(); // Found it

}

Figure 9.7 Search method for a dictionary implemented by a hash table.

number of records stored, and refuse to insert into a table that has only one free
slot.

The discussion on bucket hashing presented a simple method of collision reso-
lution. If the home position for the record is occupied, then move down the bucket
until a free slot is found. This is an example of a technique for collision resolution
known as linear probing. The probe function for simple linear probing is

p(K, i) = i.

That is, the ith offset on the probe sequence is just i, meaning that the ith step is
simply to move down i slots in the table.

Once the bottom of the table is reached, the probe sequence wraps around to
the beginning of the table. Linear probing has the virtue that all slots in the table
will be candidates for inserting a new record before the probe sequence returns to
the home position.

While linear probing is probably the first idea that comes to mind when consid-
ering collision resolution policies, it is not the only one possible. Probe function p
allows us many options for how to do collision resolution. In fact, linear probing is
one of the worst collision resolution methods. The main problem is illustrated by
Figure 9.8. Here, we see a hash table of ten slots used to store four-digit numbers,
with hash function h(K) = K mod 10. In Figure 9.8(a), five numbers have been
placed in the table, leaving five slots remaining.

The ideal behavior for a collision resolution mechanism is that each empty slot
in the table will have equal probability of receiving the next record inserted (assum-
ing that every slot in the table has equal probability of being hashed to initially). In
this example, assume that the hash function gives each slot (roughly) equal proba-
bility of being the home position for the next key. However, consider what happens
to the next record if its key has its home position at slot 0. Linear probing will
send the record to slot 2. The same will happen to records whose home position
is at slot 1. A record with home position at slot 2 will remain in slot 2. Thus, the
probability is 3/10 that the next record inserted will end up in slot 2. In a similar

326 Chap. 9 Searching

0

1

2

4

3

5

6

7

9

0

1

2

3

4

5

6

7

8

9

8

9050

1001

9877

9050

1001

9877

2037

1059

2037

(a) (b)

Figure 9.8 Example of problems with linear probing. (a) Four values are inserted
in the order 1001, 9050, 9877, and 2037 using hash function h(K) = K mod 10.
(b) The value 1059 is added to the hash table.

manner, records hashing to slots 7 or 8 will end up in slot 9. However, only records
hashing to slot 3 will be stored in slot 3, yielding one chance in ten of this happen-
ing. Likewise, there is only one chance in ten that the next record will be stored
in slot 4, one chance in ten for slot 5, and one chance in ten for slot 6. Thus, the
resulting probabilities are not equal.

To make matters worse, if the next record ends up in slot 9 (which already has
a higher than normal chance of happening), then the following record will end up
in slot 2 with probability 6/10. This is illustrated by Figure 9.8(b). This tendency
of linear probing to cluster items together is known as primary clustering. Small
clusters tend to merge into big clusters, making the problem worse. The objection
to primary clustering is that it leads to long probe sequences.

Improved Collision Resolution Methods

How can we avoid primary clustering? One possible improvement might be to use
linear probing, but to skip slots by a constant c other than 1. This would make the
probe function

p(K, i) = ci,

and so the ith slot in the probe sequence will be (h(K) + ic) mod M . In this way,
records with adjacent home positions will not follow the same probe sequence. For
example, if we were to skip by twos, then our offsets from the home slot would
be 2, then 4, then 6, and so on.

Sec. 9.4 Hashing 327

One quality of a good probe sequence is that it will cycle through all slots in
the hash table before returning to the home position. Clearly linear probing (which
“skips” slots by one each time) does this. Unfortunately, not all values for c will
make this happen. For example, if c = 2 and the table contains an even number
of slots, then any key whose home position is in an even slot will have a probe
sequence that cycles through only the even slots. Likewise, the probe sequence
for a key whose home position is in an odd slot will cycle through the odd slots.
Thus, this combination of table size and linear probing constant effectively divides
the records into two sets stored in two disjoint sections of the hash table. So long
as both sections of the table contain the same number of records, this is not really
important. However, just from chance it is likely that one section will become fuller
than the other, leading to more collisions and poorer performance for those records.
The other section would have fewer records, and thus better performance. But the
overall system performance will be degraded, as the additional cost to the side that
is more full outweighs the improved performance of the less-full side.

Constant c must be relatively prime to M to generate a linear probing sequence
that visits all slots in the table (that is, c and M must share no factors). For a hash
table of size M = 10, if c is any one of 1, 3, 7, or 9, then the probe sequence
will visit all slots for any key. When M = 11, any value for c between 1 and 10
generates a probe sequence that visits all slots for every key.

Consider the situation where c = 2 and we wish to insert a record with key k1
such that h(k1) = 3. The probe sequence for k1 is 3, 5, 7, 9, and so on. If another
key k2 has home position at slot 5, then its probe sequence will be 5, 7, 9, and so on.
The probe sequences of k1 and k2 are linked together in a manner that contributes
to clustering. In other words, linear probing with a value of c > 1 does not solve
the problem of primary clustering. We would like to find a probe function that does
not link keys together in this way. We would prefer that the probe sequence for k1
after the first step on the sequence should not be identical to the probe sequence of
k2. Instead, their probe sequences should diverge.

The ideal probe function would select the next position on the probe sequence
at random from among the unvisited slots; that is, the probe sequence should be a
random permutation of the hash table positions. Unfortunately, we cannot actually
select the next position in the probe sequence at random, because then we would not
be able to duplicate this same probe sequence when searching for the key. However,
we can do something similar called pseudo-random probing. In pseudo-random
probing, the ith slot in the probe sequence is (h(K) + ri) mod M where ri is the
ith value in a random permutation of the numbers from 1 to M − 1. All insertion
and search operations use the same random permutation. The probe function is

p(K, i) = Perm[i− 1],

where Perm is an array of length M − 1 containing a random permutation of the
values from 1 to M − 1.

328 Chap. 9 Searching

Example 9.9 Consider a table of size M = 101, with Perm[1] = 5,
Perm[2] = 2, and Perm[3] = 32. Assume that we have two keys k1 and
k2 where h(k1) = 30 and h(k2) = 35. The probe sequence for k1 is 30,
then 35, then 32, then 62. The probe sequence for k2 is 35, then 40, then
37, then 67. Thus, while k2 will probe to k1’s home position as its second
choice, the two keys’ probe sequences diverge immediately thereafter.

Another probe function that eliminates primary clustering is called quadratic
probing. Here the probe function is some quadratic function

p(K, i) = c1i
2 + c2i+ c3

for some choice of constants c1, c2, and c3. The simplest variation is p(K, i) = i2

(i.e., c1 = 1, c2 = 0, and c3 = 0. Then the ith value in the probe sequence would
be (h(K) + i2) mod M . Under quadratic probing, two keys with different home
positions will have diverging probe sequences.

Example 9.10 Given a hash table of size M = 101, assume for keys k1
and k2 that h(k1) = 30 and h(k2) = 29. The probe sequence for k1 is 30,
then 31, then 34, then 39. The probe sequence for k2 is 29, then 30, then
33, then 38. Thus, while k2 will probe to k1’s home position as its second
choice, the two keys’ probe sequences diverge immediately thereafter.

Unfortunately, quadratic probing has the disadvantage that typically not all hash
table slots will be on the probe sequence. Using p(K, i) = i2 gives particularly in-
consistent results. For many hash table sizes, this probe function will cycle through
a relatively small number of slots. If all slots on that cycle happen to be full, then
the record cannot be inserted at all! For example, if our hash table has three slots,
then records that hash to slot 0 can probe only to slots 0 and 1 (that is, the probe
sequence will never visit slot 2 in the table). Thus, if slots 0 and 1 are full, then
the record cannot be inserted even though the table is not full. A more realistic
example is a table with 105 slots. The probe sequence starting from any given slot
will only visit 23 other slots in the table. If all 24 of these slots should happen to
be full, even if other slots in the table are empty, then the record cannot be inserted
because the probe sequence will continually hit only those same 24 slots.

Fortunately, it is possible to get good results from quadratic probing at low
cost. The right combination of probe function and table size will visit many slots
in the table. In particular, if the hash table size is a prime number and the probe
function is p(K, i) = i2, then at least half the slots in the table will be visited.
Thus, if the table is less than half full, we can be certain that a free slot will be
found. Alternatively, if the hash table size is a power of two and the probe function

Sec. 9.4 Hashing 329

is p(K, i) = (i2 + i)/2, then every slot in the table will be visited by the probe
function.

Both pseudo-random probing and quadratic probing eliminate primary cluster-
ing, which is the problem of keys sharing substantial segments of a probe sequence.
If two keys hash to the same home position, however, then they will always follow
the same probe sequence for every collision resolution method that we have seen so
far. The probe sequences generated by pseudo-random and quadratic probing (for
example) are entirely a function of the home position, not the original key value.
This is because function p ignores its input parameter K for these collision resolu-
tion methods. If the hash function generates a cluster at a particular home position,
then the cluster remains under pseudo-random and quadratic probing. This problem
is called secondary clustering.

To avoid secondary clustering, we need to have the probe sequence make use of
the original key value in its decision-making process. A simple technique for doing
this is to return to linear probing by a constant step size for the probe function, but
to have that constant be determined by a second hash function, h2. Thus, the probe
sequence would be of the form p(K, i) = i ∗h2(K). This method is called double
hashing.

Example 9.11 Assume a hash table has size M = 101, and that there
are three keys k1, k2, and k3 with h(k1) = 30, h(k2) = 28, h(k3) = 30,
h2(k1) = 2, h2(k2) = 5, and h2(k3) = 5. Then, the probe sequence
for k1 will be 30, 32, 34, 36, and so on. The probe sequence for k2 will
be 28, 33, 38, 43, and so on. The probe sequence for k3 will be 30, 35,
40, 45, and so on. Thus, none of the keys share substantial portions of the
same probe sequence. Of course, if a fourth key k4 has h(k4) = 28 and
h2(k4) = 2, then it will follow the same probe sequence as k1. Pseudo-
random or quadratic probing can be combined with double hashing to solve
this problem.

A good implementation of double hashing should ensure that all of the probe
sequence constants are relatively prime to the table size M . This can be achieved
easily. One way is to select M to be a prime number, and have h2 return a value in
the range 1 ≤ h2(K) ≤M − 1. Another way is to set M = 2m for some value m
and have h2 return an odd value between 1 and 2m.

Figure 9.9 shows an implementation of the dictionary ADT by means of a hash
table. The simplest hash function is used, with collision resolution by linear prob-
ing, as the basis for the structure of a hash table implementation. A suggested
project at the end of this chapter asks you to improve the implementation with
other hash functions and collision resolution policies.

330 Chap. 9 Searching

/** Dictionary implemented using hashing. */
class HashDictionary<Key extends Comparable<? super Key>, E>

implements Dictionary<Key, E> {
private static final int defaultSize = 10;
private HashTable<Key,E> T; // The hash table
private int count; // # of records now in table
private int maxsize; // Maximum size of dictionary

HashDictionary() { this(defaultSize); }
HashDictionary(int sz) {

T = new HashTable<Key,E>(sz);
count = 0;
maxsize = sz;

}

public void clear() { /** Reinitialize */
T = new HashTable<Key,E>(maxsize);
count = 0;

}

public void insert(Key k, E e) { /** Insert an element */
assert count < maxsize : "Hash table is full";
T.hashInsert(k, e);
count++;

}

public E remove(Key k) { /** Remove an element */
E temp = T.hashRemove(k);
if (temp != null) count--;
return temp;

}

public E removeAny() { /** Remove some element. */
if (count != 0) {

count--;
return T.hashRemoveAny();

}
else return null;

}

/** Find a record with key value "k" */
public E find(Key k) { return T.hashSearch(k); }

/** Return number of values in the hash table */
public int size() { return count; }

}

Figure 9.9 A partial implementation for the dictionary ADT using a hash ta-
ble. This uses a poor hash function and a poor collision resolution policy (linear
probing), which can easily be replaced. Member functions hashInsert and
hashSearch appear in Figures 9.6 and 9.7, respectively.

Sec. 9.4 Hashing 331

9.4.4 Analysis of Closed Hashing

How efficient is hashing? We can measure hashing performance in terms of the
number of record accesses required when performing an operation. The primary
operations of concern are insertion, deletion, and search. It is useful to distinguish
between successful and unsuccessful searches. Before a record can be deleted, it
must be found. Thus, the number of accesses required to delete a record is equiv-
alent to the number required to successfully search for it. To insert a record, an
empty slot along the record’s probe sequence must be found. This is equivalent to
an unsuccessful search for the record (recall that a successful search for the record
during insertion should generate an error because two records with the same key
are not allowed to be stored in the table).

When the hash table is empty, the first record inserted will always find its home
position free. Thus, it will require only one record access to find a free slot. If all
records are stored in their home positions, then successful searches will also require
only one record access. As the table begins to fill up, the probability that a record
can be inserted into its home position decreases. If a record hashes to an occupied
slot, then the collision resolution policy must locate another slot in which to store
it. Finding records not stored in their home position also requires additional record
accesses as the record is searched for along its probe sequence. As the table fills
up, more and more records are likely to be located ever further from their home
positions.

From this discussion, we see that the expected cost of hashing is a function of
how full the table is. Define the load factor for the table as α = N/M , where N
is the number of records currently in the table.

An estimate of the expected cost for an insertion (or an unsuccessful search)
can be derived analytically as a function of α in the case where we assume that
the probe sequence follows a random permutation of the slots in the hash table.
Assuming that every slot in the table has equal probability of being the home slot
for the next record, the probability of finding the home position occupied is α. The
probability of finding both the home position occupied and the next slot on the
probe sequence occupied is N(N−1)

M(M−1) . The probability of i collisions is

N(N − 1) · · · (N − i+ 1)

M(M − 1) · · · (M − i+ 1)
.

If N and M are large, then this is approximately (N/M)i. The expected number
of probes is one plus the sum over i ≥ 1 of the probability of i collisions, which is
approximately

1 +

∞∑
i=1

(N/M)i = 1/(1− α).

332 Chap. 9 Searching

The cost for a successful search (or a deletion) has the same cost as originally
inserting that record. However, the expected value for the insertion cost depends
on the value of α not at the time of deletion, but rather at the time of the original
insertion. We can derive an estimate of this cost (essentially an average over all the
insertion costs) by integrating from 0 to the current value of α, yielding a result of

1

α

∫ α

0

1

1− x
dx =

1

α
loge

1

1− α
.

It is important to realize that these equations represent the expected cost for
operations using the unrealistic assumption that the probe sequence is based on a
random permutation of the slots in the hash table (thus avoiding all expense result-
ing from clustering). Thus, these costs are lower-bound estimates in the average
case. The true average cost under linear probing is 1

2(1+1/(1−α)2) for insertions
or unsuccessful searches and 1

2(1+1/(1−α)) for deletions or successful searches.
Proofs for these results can be found in the references cited in Section 9.5.

Figure 9.10 shows the graphs of these four equations to help you visualize the
expected performance of hashing based on the load factor. The two solid lines show
the costs in the case of a “random” probe sequence for (1) insertion or unsuccessful
search and (2) deletion or successful search. As expected, the cost for insertion or
unsuccessful search grows faster, because these operations typically search further
down the probe sequence. The two dashed lines show equivalent costs for linear
probing. As expected, the cost of linear probing grows faster than the cost for
“random” probing.

From Figure 9.10 we see that the cost for hashing when the table is not too full
is typically close to one record access. This is extraordinarily efficient, much better
than binary search which requires log n record accesses. As α increases, so does
the expected cost. For small values of α, the expected cost is low. It remains below
two until the hash table is about half full. When the table is nearly empty, adding
a new record to the table does not increase the cost of future search operations
by much. However, the additional search cost caused by each additional insertion
increases rapidly once the table becomes half full. Based on this analysis, the rule
of thumb is to design a hashing system so that the hash table never gets above half
full. Beyond that point performance will degrade rapidly. This requires that the
implementor have some idea of how many records are likely to be in the table at
maximum loading, and select the table size accordingly.

You might notice that a recommendation to never let a hash table become more
than half full contradicts the disk-based space/time tradeoff principle, which strives
to minimize disk space to increase information density. Hashing represents an un-
usual situation in that there is no benefit to be expected from locality of reference.
In a sense, the hashing system implementor does everything possible to eliminate
the effects of locality of reference! Given the disk block containing the last record

Sec. 9.4 Hashing 333

1

2

3

4

5

DeleteInsert

0 .2 .4 .6 .8 1.0

Figure 9.10 Growth of expected record accesses with α. The horizontal axis is
the value for α, the vertical axis is the expected number of accesses to the hash
table. Solid lines show the cost for “random” probing (a theoretical lower bound
on the cost), while dashed lines show the cost for linear probing (a relatively poor
collision resolution strategy). The two leftmost lines show the cost for insertion
(equivalently, unsuccessful search); the two rightmost lines show the cost for dele-
tion (equivalently, successful search).

accessed, the chance of the next record access coming to the same disk block is
no better than random chance in a well-designed hash system. This is because a
good hashing implementation breaks up relationships between search keys. Instead
of improving performance by taking advantage of locality of reference, hashing
trades increased hash table space for an improved chance that the record will be
in its home position. Thus, the more space available for the hash table, the more
efficient hashing should be.

Depending on the pattern of record accesses, it might be possible to reduce the
expected cost of access even in the face of collisions. Recall the 80/20 rule: 80%
of the accesses will come to 20% of the data. In other words, some records are
accessed more frequently. If two records hash to the same home position, which
would be better placed in the home position, and which in a slot further down the
probe sequence? The answer is that the record with higher frequency of access
should be placed in the home position, because this will reduce the total number of
record accesses. Ideally, records along a probe sequence will be ordered by their
frequency of access.

One approach to approximating this goal is to modify the order of records along
the probe sequence whenever a record is accessed. If a search is made to a record

334 Chap. 9 Searching

that is not in its home position, a self-organizing list heuristic can be used. For
example, if the linear probing collision resolution policy is used, then whenever a
record is located that is not in its home position, it can be swapped with the record
preceding it in the probe sequence. That other record will now be further from
its home position, but hopefully it will be accessed less frequently. Note that this
approach will not work for the other collision resolution policies presented in this
section, because swapping a pair of records to improve access to one might remove
the other from its probe sequence.

Another approach is to keep access counts for records and periodically rehash
the entire table. The records should be inserted into the hash table in frequency
order, ensuring that records that were frequently accessed during the last series of
requests have the best chance of being near their home positions.

9.4.5 Deletion

When deleting records from a hash table, there are two important considerations.

1. Deleting a record must not hinder later searches. In other words, the search
process must still pass through the newly emptied slot to reach records whose
probe sequence passed through this slot. Thus, the delete process cannot
simply mark the slot as empty, because this will isolate records further down
the probe sequence. For example, in Figure 9.8(a), keys 9877 and 2037 both
hash to slot 7. Key 2037 is placed in slot 8 by the collision resolution policy.
If 9877 is deleted from the table, a search for 2037 must still pass through
Slot 7 as it probes to slot 8.

2. We do not want to make positions in the hash table unusable because of
deletion. The freed slot should be available to a future insertion.

Both of these problems can be resolved by placing a special mark in place
of the deleted record, called a tombstone. The tombstone indicates that a record
once occupied the slot but does so no longer. If a tombstone is encountered when
searching along a probe sequence, the search procedure continues with the search.
When a tombstone is encountered during insertion, that slot can be used to store the
new record. However, to avoid inserting duplicate keys, it will still be necessary for
the search procedure to follow the probe sequence until a truly empty position has
been found, simply to verify that a duplicate is not in the table. However, the new
record would actually be inserted into the slot of the first tombstone encountered.

The use of tombstones allows searches to work correctly and allows reuse of
deleted slots. However, after a series of intermixed insertion and deletion opera-
tions, some slots will contain tombstones. This will tend to lengthen the average
distance from a record’s home position to the record itself, beyond where it could
be if the tombstones did not exist. A typical database application will first load a
collection of records into the hash table and then progress to a phase of intermixed

Sec. 9.5 Further Reading 335

insertions and deletions. After the table is loaded with the initial collection of
records, the first few deletions will lengthen the average probe sequence distance
for records (it will add tombstones). Over time, the average distance will reach
an equilibrium point because insertions will tend to decrease the average distance
by filling in tombstone slots. For example, after initially loading records into the
database, the average path distance might be 1.2 (i.e., an average of 0.2 accesses
per search beyond the home position will be required). After a series of insertions
and deletions, this average distance might increase to 1.6 due to tombstones. This
seems like a small increase, but it is three times longer on average beyond the home
position than before deletions.

Two possible solutions to this problem are

1. Do a local reorganization upon deletion to try to shorten the average path
length. For example, after deleting a key, continue to follow the probe se-
quence of that key and swap records further down the probe sequence into
the slot of the recently deleted record (being careful not to remove any key
from its probe sequence). This will not work for all collision resolution poli-
cies.

2. Periodically rehash the table by reinserting all records into a new hash table.
Not only will this remove the tombstones, but it also provides an opportunity
to place the most frequently accessed records into their home positions.

9.5 Further Reading

For a comparison of the efficiencies for various self-organizing techniques, see
Bentley and McGeoch, “Amortized Analysis of Self-Organizing Sequential Search
Heuristics” [BM85]. The text compression example of Section 9.2 comes from
Bentley et al., “A Locally Adaptive Data Compression Scheme” [BSTW86]. For
more on Ziv-Lempel coding, see Data Compression: Methods and Theory by
James A. Storer [Sto88]. Knuth covers self-organizing lists and Zipf distributions
in Volume 3 of The Art of Computer Programming[Knu98].

Introduction to Modern Information Retrieval by Salton and McGill [SM83] is
an excellent source for more information about document retrieval techniques.

See the paper “Practical Minimal Perfect Hash Functions for Large Databases”
by Fox et al. [FHCD92] for an introduction and a good algorithm for perfect hash-
ing.

For further details on the analysis for various collision resolution policies, see
Knuth, Volume 3 [Knu98] and Concrete Mathematics: A Foundation for Computer
Science by Graham, Knuth, and Patashnik [GKP94].

The model of hashing presented in this chapter has been of a fixed-size hash
table. A problem not addressed is what to do when the hash table gets half full and
more records must be inserted. This is the domain of dynamic hashing methods.

336 Chap. 9 Searching

A good introduction to this topic is “Dynamic Hashing Schemes” by R.J. Enbody
and H.C. Du [ED88].

9.6 Exercises

9.1 Create a graph showing expected cost versus the probability of an unsuc-
cessful search when performing sequential search (see Section 9.1). What
can you say qualitatively about the rate of increase in expected cost as the
probability of unsuccessful search grows?

9.2 Modify the binary search routine of Section 3.5 to implement interpolation
search. Assume that keys are in the range 1 to 10,000, and that all key values
within the range are equally likely to occur.

9.3 Write an algorithm to find the Kth smallest value in an unsorted array of n
numbers (K <= n). Your algorithm should require Θ(n) time in the average
case. Hint: Your algorithm should look similar to Quicksort.

9.4 Example 9.9.3 discusses a distribution where the relative frequencies of the
records match the harmonic series. That is, for every occurrence of the first
record, the second record will appear half as often, the third will appear one
third as often, the fourth one quarter as often, and so on. The actual prob-
ability for the ith record was defined to be 1/(iHn). Explain why this is
correct.

9.5 Graph the equations T(n) = log2 n and T(n) = n/ loge n. Which gives the
better performance, binary search on a sorted list, or sequential search on a
list ordered by frequency where the frequency conforms to a Zipf distribu-
tion? Characterize the difference in running times.

9.6 Assume that the values A through H are stored in a self-organizing list, ini-
tially in ascending order. Consider the three self-organizing list heuristics:
count, move-to-front, and transpose. For count, assume that the record is
moved ahead in the list passing over any other record that its count is now
greater than. For each, show the resulting list and the total number of com-
parisons required resulting from the following series of accesses:

D H H G H E G H G H E C E H G.

9.7 For each of the three self-organizing list heuristics (count, move-to-front, and
transpose), describe a series of record accesses for which it would require the
greatest number of comparisons of the three.

9.8 Write an algorithm to implement the frequency count self-organizing list
heuristic, assuming that the list is implemented using an array. In particu-
lar, write a function FreqCount that takes as input a value to be searched
for and which adjusts the list appropriately. If the value is not already in the
list, add it to the end of the list with a frequency count of one.

Sec. 9.6 Exercises 337

9.9 Write an algorithm to implement the move-to-front self-organizing list heuri-
stic, assuming that the list is implemented using an array. In particular, write
a function MoveToFront that takes as input a value to be searched for and
which adjusts the list appropriately. If the value is not already in the list, add
it to the beginning of the list.

9.10 Write an algorithm to implement the transpose self-organizing list heuristic,
assuming that the list is implemented using an array. In particular, write
a function Transpose that takes as input a value to be searched for and
which adjusts the list appropriately. If the value is not already in the list, add
it to the end of the list.

9.11 Write functions for computing union, intersection, and set difference on ar-
bitrarily long bit vectors used to represent set membership as described in
Section 9.3. Assume that for each operation both vectors are of equal length.

9.12 Compute the probabilities for the following situations. These probabilities
can be computed analytically, or you may write a computer program to gen-
erate the probabilities by simulation.

(a) Out of a group of 23 students, what is the probability that 2 students
share the same birthday?

(b) Out of a group of 100 students, what is the probability that 3 students
share the same birthday?

(c) How many students must be in the class for the probability to be at least
50% that there are 2 who share a birthday in the same month?

9.13 Assume that you are hashing key K to a hash table of n slots (indexed from
0 to n − 1). For each of the following functions h(K), is the function ac-
ceptable as a hash function (i.e., would the hash program work correctly for
both insertions and searches), and if so, is it a good hash function? Function
Random(n) returns a random integer between 0 and n− 1, inclusive.

(a) h(k) = k/n where k and n are integers.
(b) h(k) = 1.
(c) h(k) = (k + Random(n)) mod n.
(d) h(k) = k mod n where n is a prime number.

9.14 Assume that you have a seven-slot closed hash table (the slots are numbered
0 through 6). Show the final hash table that would result if you used the
hash function h(k) = k mod 7 and linear probing on this list of numbers:
3, 12, 9, 2. After inserting the record with key value 2, list for each empty
slot the probability that it will be the next one filled.

9.15 Assume that you have a ten-slot closed hash table (the slots are numbered 0
through 9). Show the final hash table that would result if you used the hash
function h(k) = k mod 10 and quadratic probing on this list of numbers:
3, 12, 9, 2, 79, 46. After inserting the record with key value 46, list for each
empty slot the probability that it will be the next one filled.

338 Chap. 9 Searching

9.16 Assume that you have a ten-slot closed hash table (the slots are numbered
0 through 9). Show the final hash table that would result if you used the
hash function h(k) = k mod 10 and pseudo-random probing on this list of
numbers: 3, 12, 9, 2, 79, 44. The permutation of offsets to be used by the
pseudo-random probing will be: 5, 9, 2, 1, 4, 8, 6, 3, 7. After inserting the
record with key value 44, list for each empty slot the probability that it will
be the next one filled.

9.17 What is the result of running sfold from Section 9.4.1 on the following
strings? Assume a hash table size of 101 slots.

(a) HELLO WORLD
(b) NOW HEAR THIS
(c) HEAR THIS NOW

9.18 Using closed hashing, with double hashing to resolve collisions, insert the
following keys into a hash table of thirteen slots (the slots are numbered
0 through 12). The hash functions to be used are H1 and H2, defined be-
low. You should show the hash table after all eight keys have been inserted.
Be sure to indicate how you are using H1 and H2 to do the hashing. Func-
tion Rev(k) reverses the decimal digits of k, for example, Rev(37) = 73;
Rev(7) = 7.

H1(k) = k mod 13.
H2(k) = (Rev(k + 1) mod 11).

Keys: 2, 8, 31, 20, 19, 18, 53, 27.
9.19 Write an algorithm for a deletion function for hash tables that replaces the

record with a special value indicating a tombstone. Modify the functions
hashInsert and hashSearch to work correctly with tombstones.

9.20 Consider the following permutation for the numbers 1 to 6:

2, 4, 6, 1, 3, 5.

Analyze what will happen if this permutation is used by an implementation of
pseudo-random probing on a hash table of size seven. Will this permutation
solve the problem of primary clustering? What does this say about selecting
a permutation for use when implementing pseudo-random probing?

9.7 Projects

9.1 Implement a binary search and the quadratic binary search of Section 9.1.
Run your implementations over a large range of problem sizes, timing the
results for each algorithm. Graph and compare these timing results.

Sec. 9.7 Projects 339

9.2 Implement the three self-organizing list heuristics count, move-to-front, and
transpose. Compare the cost for running the three heuristics on various input
data. The cost metric should be the total number of comparisons required
when searching the list. It is important to compare the heuristics using input
data for which self-organizing lists are reasonable, that is, on frequency dis-
tributions that are uneven. One good approach is to read text files. The list
should store individual words in the text file. Begin with an empty list, as
was done for the text compression example of Section 9.2. Each time a word
is encountered in the text file, search for it in the self-organizing list. If the
word is found, reorder the list as appropriate. If the word is not in the list,
add it to the end of the list and then reorder as appropriate.

9.3 Implement the text compression system described in Section 9.2.
9.4 Implement a system for managing document retrieval. Your system should

have the ability to insert (abstract references to) documents into the system,
associate keywords with a given document, and to search for documents with
specified keywords.

9.5 Implement a database stored on disk using bucket hashing. Define records to
be 128 bytes long with a 4-byte key and 120 bytes of data. The remaining
4 bytes are available for you to store necessary information to support the
hash table. A bucket in the hash table will be 1024 bytes long, so each bucket
has space for 8 records. The hash table should consist of 27 buckets (total
space for 216 records with slots indexed by positions 0 to 215) followed by
the overflow bucket at record position 216 in the file. The hash function for
key value K should be K mod 213. (Note that this means the last three
slots in the table will not be home positions for any record.) The collision
resolution function should be linear probing with wrap-around within the
bucket. For example, if a record is hashed to slot 5, the collision resolution
process will attempt to insert the record into the table in the order 5, 6, 7, 0,
1, 2, 3, and finally 4. If a bucket is full, the record should be placed in the
overflow section at the end of the file.
Your hash table should implement the dictionary ADT of Section 4.4. When
you do your testing, assume that the system is meant to store about 100 or so
records at a time.

9.6 Implement the dictionary ADT of Section 4.4 by means of a hash table with
linear probing as the collision resolution policy. You might wish to begin
with the code of Figure 9.9. Using empirical simulation, determine the cost
of insert and delete as α grows (i.e., reconstruct the dashed lines of Fig-
ure 9.10). Then, repeat the experiment using quadratic probing and pseudo-
random probing. What can you say about the relative performance of these
three collision resolution policies?

